b' (4th Generation) Quark, Searches for

b'-quark/hadron mass limits in $p\bar{p}$ and pp collisions

DOCUMENT ID

VALUE (CaV)

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		IECN	COMMENT
>685 (CL = 95%) [>128 GeV (CL = 95%) OUR 2012 BEST LIMIT]					
>480	95				$B(b' \to W t) = 1$
>400	95				$B(b'\to\ Zb)=1$
>350	95	³ AAD	12BC	ATLS	$B(b' \to W q) = 1 \ (q{=}u,c)$
>685	95	⁴ CHATRCHYAN	12 вн	CMS	$m_{t'} = m_{b'}$
>611	95	⁵ CHATRCHYAN	12X	CMS	$B(b'\to Wt)=1$
>190	95	⁶ ABAZOV	08X	D0	c au= 200mm
>190	95	⁷ ACOSTA	03	CDF	quasi-stable b'
• • • We do no	t use the	e following data for	avera	ges, fits,	limits, etc. • • •
>450	95	⁸ AAD	12BE	ATLS	$B(b'\to\ Wt)=1$
>372	95	⁹ AALTONEN			
>361	95	¹⁰ CHATRCHYAN	l 11L	CMS	Repl. by CHATRCHYAN 12X
>338	95	11 AALTONEN	10H	CDF	$b' \rightarrow W t$
> 380–430	95	¹² FLACCO	10	RVUE	$m_{h'} > m_{t'}$
>268	95 ¹³	^{3,14} AALTONEN	07C	CDF	B(b' o Zb) = 1 assumed
>199	95	¹⁵ AFFOLDER	00		
>148	95	¹⁶ ABE	98N	CDF	NC: $b' \rightarrow Zb$ +decay vertex
> 96	95	¹⁷ ABACHI	97 D	D0	NC: $b' \rightarrow b\gamma$
>128	95		95F		$\ell\ell$ + jets, ℓ + jets
> 75	95	¹⁹ MUKHOPAD			$NC: b' \rightarrow b\ell\ell$
> 85	95	²⁰ ABE	92	CDF	CC: $\ell\ell$
> 72	95	²¹ ABE	90 B		CC: $e + \mu$
> 54	95	²² AKESSON			CC: $e + \text{jets} + \text{missing } E_T$
> 43	95			UA1	CC: μ + jets
> 34	95	²⁴ ALBAJAR	88	UA1	CC: e or μ + jets

 1 Based on 1.04 fb $^{-1}$ of data at LHC7. No signal is found for the search of heavy quark pair production that decay into W and a t quark in the events with a high p_T isolated lepton, large $\not\!\!E_T$, and at least 6 jets in which one, two or more dijets are from W.

² Based on 2.0 fb⁻¹ of data at LHC7. No $b' \to Zb$ invariant mass peak is found in the search of heavy quark pair production that decay into Z and a b quark in events with $Z \to e^+e^-$ and at least one b-jet. The lower mass limit is 358 GeV for a vector-like singlet b' mixing solely with the third SM generation.

³ Based on 1.04 fb⁻¹ of data at LHC7. No signal is found for the search of heavy quark pair production that decay into W and a quark in the events with dileptons, large E_T , and > 2 iets.

⁴ Based on 5 fb⁻¹ of data at LHC7. CHATRCHYAN 12BH searched for QCD and EW production of single and pair of degenerate 4'th generation quarks that decay to bW or tW. Absence of signal in events with one lepton, same-sign dileptons or tri-leptons gives the bound. With a mass difference of 25 GeV/c² between $m_{t'}$ and $m_{b'}$, the corresponding limit shifts by about $\pm 20 \text{ GeV/c}^2$.

⁵ Based on 4.9 fb $^{-1}$ of data at LHC7. CHATRCHYAN 12X looked for events with trileptons or same-sign dileptons and at least one b jet.

⁶ Result is based on $1.1~{\rm fb}^{-1}$ of data. No signal is found for the search of long-lived particles which decay into final states with two electrons or photons, and upper bound on the cross section times branching fraction is obtained for $2 < c\tau < 7000~{\rm mm}$; see Fig. 3. 95% CL excluded region of b' lifetime and mass is shown in Fig. 4.

⁷ ACOSTA 03 looked for long-lived fourth generation quarks in the data sample of 90 pb⁻¹ of \sqrt{s} =1.8 TeV $p\bar{p}$ collisions by using the muon-like penetration and anomalously high ionization energy loss signature. The corresponding lower mass bound for the charge (2/3)e quark (t') is 220 GeV. The t' bound is higher than the b' bound because t' is more likely to produce charged hadrons than b'. The 95% CL upper bounds for the production cross sections are given in their Fig. 3.

 8 Based on 1.04 fb $^{-1}$ of data at LHC7. AAD 12BE looked for events with two isolated like-sign leptons and at least 2 jets, large $\not\!\!E_T$ and $H_T>350$ GeV.

⁹ Based on 4.8 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. AALTONEN 11J looked for events with $\ell+E_T+\geq 5\mathrm{j}$ ($\geq 1~b$ or c). No signal is observed and the bound $\sigma(b'\overline{b}')$ < 30 fb for $m_{b'}>375$ GeV is found for B($b'\to Wt$) = 1.

 10 Based on 34 pb $^{-1}$ of data in pp collisions at 7 TeV. CHATRCHYAN 11L looked for multijet events with trileptons or same-sign dileptons. No excess above the SM background excludes $m_{b'}$ between 255 and 361 GeV at 95% CL for B($b' \rightarrow Wt$) = 1.

NODE=Q008

NODE=Q008BPP NODE=Q008BPP

NODE=Q008BPP;LINKAGE=GD

NODE=Q008BPP;LINKAGE=DG

NODE=Q008BPP;LINKAGE=GA

 ${\sf NODE=Q008BPP;LINKAGE=CT}$

NODE=Q008BPP;LINKAGE=CA

NODE=Q008BPP;LINKAGE=AA

NODE=Q008BPP;LINKAGE=CS

NODE=Q008BPP;LINKAGE=AD

NODE=Q008BPP;LINKAGE=AO

NODE=Q008BPP;LINKAGE=CH

 11 Based on 2.7 fb $^{-1}$ of data in $p\overline{p}$ collisions at $\sqrt{s}=$ 1.96 TeV. AALTONEN 10H looked for pair production of heavy quarks which decay into tW^- or tW^+ , in events with same sign dileptons (e or μ), several jets and large missing E_T . The result is obtained for b'which decays into tW^- . For the charge 5/3 quark $(T_{5/3})$ which decays into tW^+ , $m_{T_{5/3}} >$ 365 GeV (95% CL) is found when it has the charge -1/3 partner B of the samé mass

 12 FLACCO 10 result is obtained from AALTONEN 10H result of $m_{b^\prime} >$ 338 GeV, by relaxing the condition B($b' \rightarrow Wt$) = 100% when $m_{b'} > m_{t'}$.

 $^{13}\,\mathrm{Result}$ is based on 1.06 fb $^{-1}$ of data. No excess from the SM $Z+\mathrm{jet}$ events is found when Z decays into e e or $\mu\mu$. The $m_{b'}$ bound is found by comparing the resulting upper bound on $\sigma(b'\overline{b}')$ [1-(1-B($b' \to Zb$))²] and the LO estimate of the b' pair production cross section shown in Fig. 38 of the article.

 14 HUANG 08 reexamined the b^\prime mass lower bound of 268 GeV obtained in AALTONEN 07C that assumes B($b' \rightarrow Zb$) = 1, which does not hold for $m_{b'} >$ 255 GeV. The lower mass bound is given in the plane of $\sin^2(\theta_{t\,b'})$ and $m_{b'}$

 15 AFFOLDER 00 looked for b^\prime that decays in to b+Z. The signal searched for is bbZZevents where one Z decays into e^+e^- or $\mu^+\mu^-$ and the other Z decays hadronically. The bound assumes B($b' \rightarrow Zb$)= 100%. Between 100 GeV and 199 GeV, the 95%CL upper bound on $\sigma(b' \to \overline{b}') \times B^2(b' \to Zb)$ is also given (see their Fig. 2).

 16 ABE 98N looked for $Z
ightarrow e^+e^-$ decays with displaced vertices. Quoted limit assumes B($b' \rightarrow Zb$)=1 and $c au_{b'}$ =1 cm. The limit is lower than $m_Z + m_b$ (\sim 96 GeV) if $c\tau$ > 22 cm or $c\tau$ < 0.009 cm. See their Fig. 4.

 $^{17}\,\mathrm{ABACHI}$ 97D searched for b' that decays mainly via FCNC. They obtained 95%CL upper bounds on B($b'\bar{b}' \to \gamma + 3$ jets) and B($b'\bar{b}' \to 2\gamma + 2$ jets), which can be interpreted as the lower mass bound $m_{h'} > m_Z + m_b$.

 18 ABACHI 95F bound on the top-quark also applies to b^\prime and t^\prime quarks that decay predominantly into W. See FROGGATT 97.

 $^{19}\,\mathrm{MUKHOPADHYAYA}$ 93 analyze CDF dilepton data of ABE 92G in terms of a new quark decaying via flavor-changing neutral current. The above limit assumes $\mathsf{B}(b' \to b')$ $b\ell^+\ell^-$)=1%. For an exotic quark decaying only via virtual Z [B($b\ell^+\ell^-$) = 3%], the limit is 85 GeV.

 20 ABE 92 dilepton analysis limit of >85 GeV at CL=95% also applies to b^\prime quarks, as discussed in ABE 90B.

21 ABE 90B exclude the region 28–72 GeV.

 22 AKESSON 90 searched for events having an electron with $p_T~>12$ GeV, missing momentum > 15 GeV, and a jet with $E_T>$ 10 GeV, $|\eta|$ < 2.2, and excluded $m_{h'}$ between 30 and 69 GeV.

²³ For the reduction of the limit due to non-charged-current decay modes, see Fig. 19 of ALBAJAR 90B.

ALBAJAR 88 study events at $E_{\rm cm} = 546$ and 630 GeV with a muon or isolated electron, accompanied by one or more jets and find agreement with Monte Carlo predictions for the production of charm and bottom, without the need for a new quark. The lower mass limit is obtained by using a conservative estimate for the $b'\bar{b}'$ production cross section and by assuming that it cannot be produced in W decays. The value quoted here is revised using the full $O(\alpha_s^3)$ cross section of ALTARELLI 88.

NODE=Q008BPP;LINKAGE=AT

NODE=Q008BPP;LINKAGE=FL

NODE=Q008BPP;LINKAGE=AL

NODE=Q008BPP;LINKAGE=HU

NODE=Q008BPP;LINKAGE=EB

NODE=Q008BPP;LINKAGE=AN

NODE=Q008BPP;LINKAGE=K2

NODE=Q008BPP;LINKAGE=1K

NODE=Q008BPP;LINKAGE=C

NODE=Q008BPP;LINKAGE=U

NODE=Q008BPP;LINKAGE=AB NODE=Q008BPP;LINKAGE=F

NODE=Q008BPP;LINKAGE=A

NODE=Q008BPP;LINKAGE=D

b' mass limits from single production in $p\bar{p}$ and pp collisions

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>693	95	²⁵ ABAZOV	11F	D0	qu ightarrow q'b' ightarrow q'(Wu)
		25			$\widetilde{\kappa}_{ub'}=1,\;B(b'\to Wu)=1$
>430	95	²⁵ ABAZOV	11F	D0	$qd \rightarrow qb' \rightarrow q(Zd)$
					$\widetilde{\kappa}_{d,b'} = \sqrt{2}$, B($b' \rightarrow Zd$)=1

 $^{25}\mathrm{Based}$ on 5.4 fb $^{-1}$ of data in ppbar collisions at 1.96 TeV. ABAZOV 11F looked for single production of b' via the W or Z coupling to the first generation up or down quarks, respectively. Model independent cross section limits for the single production processes $p\overline{p} \rightarrow b'q \rightarrow Wuq$, and $p\overline{p} \rightarrow b'q \rightarrow Zdq$ are given in Figs. 3 and 4, respectively, and the mass limits are obtained for the model of ATRE 09 with degenerate bi-doublets of vector-like quarks.

NODE=Q008BPS NODE=Q008BPS

OCCUR=2

NODE=Q008BPS;LINKAGE=AB

MASS LIMITS for b' (4th Generation) Quark or Hadron in e^+e^- Collisions

Search for hadrons containing a fourth-generation -1/3 quark denoted b'.

The last column specifies the assumption for the decay mode (CC denotes the conventional charged-current decay) and the event signature which is looked for.

CL% DOCUMENT ID TECN COMMENT ²⁶ DECAMP 90F ALEP any decay 95

NODE=Q008BPE NODE=Q008BPE

NODE=Q008BPE

>46.0

• • •	We do not	use the following	data for averages,	fits, limits	, etc. • •	•
-------	-----------	-------------------	--------------------	--------------	------------	---

none 96-103	95	²⁷ ABDALLAH	07	DLPH	$b' \rightarrow bZ, cW$	
		²⁸ ADRIANI	93G	L3	Quarkonium	
>44.7	95	ADRIANI	93M	L3	$\Gamma(Z)$	
>45	95	ABREU	91F	DLPH	$\Gamma(Z)$	
none 19.4-28.2	95	ABE	90 D	VNS	Any decay; event shape	
>45.0	95	ABREU	90 D	DLPH	B(CC) = 1; event shape	
>44.5	95	²⁹ ABREU	90 D	DLPH		OCCUR=2
>40.5	95	³⁰ ABREU	90 D	DLPH	$\Gamma(Z \rightarrow \text{hadrons})$	OCCUR=3
>28.3	95	ADACHI	90	TOPZ	B(FCNC)=100%; isol. γ or 4 jets	
>41.4	95	³¹ AKRAWY	90 B	OPAL	Any decay; acoplanarity	
>45.2	95	³¹ AKRAWY		OPAL		OCCUR=2
>46	95	³² AKRAWY	90J	OPAL	$b' \rightarrow \gamma + any$	
>27.5	95	³³ ABE		VNS	$B(CC) = 1; \mu, e$	
none 11.4-27.3	95	³⁴ ABE	89G	VNS	$B(b' \to b\gamma) > 10\%;$ isolated γ	
>44.7	95	³⁵ ABRAMS	89 C	MRK2	,	
>42.7	95	³⁵ ABRAMS	89 C	MRK2	B(bg) = 100%; event shape	OCCUR=2
>42.0	95	³⁵ ABRAMS	89C	MRK2	Any decay; event shape	OCCUR=3
>28.4	95	36,37 ADACHI			$B(CC) = 1; \mu$	
>28.8	95	³⁸ ENO	89	AMY	$B(CC) \gtrsim 90\%$; μ , e	
>27.2	95	^{38,39} ENO	89	AMY	any decay; event shape	OCCUR=2
>29.0	95	³⁸ ENO	89	AMY	$B(b' \rightarrow bg) \gtrsim 85\%;$ event shape	OCCUR=3
>24.4	95	⁴⁰ IGARASHI	88	AMY	μ ,e	
>23.8	95	⁴¹ SAGAWA	88	AMY	event shape	
>22.7	95	⁴² ADEVA	86	MRKJ	μ	
>21		⁴³ ALTHOFF	84C		R, event shape	
>19		⁴⁴ ALTHOFF	841	TASS	Aplanarity	
26			_			

²⁶ DECAMP 90F looked for isolated charged particles, for isolated photons, and for four-jet final states. The modes $b' \to bg$ for B($b' \to bg$) > 5% $b' \to b\gamma$ for B($b' \to b\gamma$) > 5% are excluded. Charged Higgs decay were not discussed.

 ${\sf NODE}{=}{\sf Q008BPE}; {\sf LINKAGE}{=}{\sf DC}$

NODE=Q008BPE;LINKAGE=DA

NODE=Q008BPE;LINKAGE=TB

NODE=Q008BPE;LINKAGE=AB NODE=Q008BPE;LINKAGE=AF NODE=Q008BPE;LINKAGE=AK

NODE=Q008BPE;LINKAGE=T

NODE=Q008BPE;LINKAGE=A

NODE=Q008BPE;LINKAGE=B NODE=Q008BPE;LINKAGE=G

NODE=Q008BPE;LINKAGE=C

NODE=Q008BPE;LINKAGE=F NODE=Q008BPE;LINKAGE=D NODE=Q008BPE;LINKAGE=E NODE=Q008BPE;LINKAGE=S

NODE=Q008BPE;LINKAGE=Q

²⁷ ABDALLAH 07 searched for b' pair production at $E_{\rm cm} = 196$ –209 GeV, with 420 pb⁻¹. No signal leads to the 95% CL upper limits on B($b' \rightarrow bZ$) and B($b' \rightarrow cW$) for $m_{b'} = 96$ to 103 GeV.

 $^{^{28}}$ ADRIANI 93G search for vector quarkonium states near Z and give limit on quarkonium- Z mixing parameter $\delta m^2 < \! (10\text{--}30)$ GeV 2 (95%CL) for the mass 88–94.5 GeV. Using Richardson potential, a 1S $(b'\,\overline{b}')$ state is excluded for the mass range 87.7–94.7 GeV. This range depends on the potential choice.

 $^{^{29} \}mathrm{ABREU}$ 90D assumed $m_{\ensuremath{H^-}} < m_{\ensuremath{b^\prime}} - 3 \ \mathrm{GeV}.$

 $^{^{30}}$ Superseded by ABREU 91F.

³¹ AKRAWY 90B search was restricted to data near the Z peak at $E_{\rm cm}=91.26$ GeV at LEP. The excluded region is between 23.6 and 41.4 GeV if no H^+ decays exist. For charged Higgs decays the excluded regions are between ($m_{H^+}+1.5$ GeV) and 45.5 GeV

³² AKRAWY 90J search for isolated photons in hadronic Z decay and derive B($Z \rightarrow b' \overline{b}'$)·B($b' \rightarrow \gamma X$)/B($Z \rightarrow$ hadrons) $< 2.2 \times 10^{-3}$. Mass limit assumes B($b' \rightarrow \gamma X$) > 10%.

³³ ABE 89E search at $E_{\rm cm}=56$ –57 GeV at TRISTAN for multihadron events with a spherical shape (using thrust and acoplanarity) or containing isolated leptons.

 $^{^{34}\,\}mathrm{ABE}$ 89G search was at $E_\mathrm{cm}=55\text{--}60.8$ GeV at TRISTAN.

³⁵ If the photonic decay mode is large (B($b' \rightarrow b\gamma$) > 25%), the ABRAMS 89C limit is 45.4 GeV. The limit for for Higgs decay ($b' \rightarrow cH^-$, $H^- \rightarrow \overline{c}s$) is 45.2 GeV.

 $^{^{36}}$ ADACHI 89C search was at $E_{\rm cm}=56.5\text{--}60.8$ GeV at TRISTAN using multi-hadron events accompanying muons.

 $[\]frac{37}{1}$ ADACHI 89C also gives limits for any mixture of CC and DG decays.

 $^{^{38}\,\}mathrm{ENO}$ 89 search at $E_\mathrm{cm}=$ 50–60.8 at TRISTAN.

 $^{^{39}}$ ENO 89 considers arbitrary mixture of the charged current, bg, and $b\gamma$ decays.

 $^{^{40}}$ IGARASHI 88 searches for leptons in low-thrust events and gives $\Delta R(b') < 0.26$ (95% CL) assuming charged current decay, which translates to $m_{h'} > 24.4$ GeV.

 $^{^{41}}$ SAGAWA 88 set limit $\sigma(\text{top}) < 6.1$ pb at CL=95% for top-flavored hadron production from event shape analyses at $E_{\text{CM}} = 52$ GeV. By using the quark parton model cross-section formula near threshold, the above limit leads to lower mass bounds of 23.8 GeV for charge -1/3 quarks.

 42 ADEVA 86 give 95%CL upper bound on an excess of the normalized cross section, $\Delta R_{\rm c}$ as a function of the minimum c.m. energy (see their figure 3). Production of a pair of 1/3 charge quarks is excluded up to $E_{\rm cm}=45.4$ GeV.

 43 ALTHOFF 84C narrow state search sets limit $\Gamma(e^+\,e^-) B(hadrons) < 2.4$ keV CL = 95% and heavy charge 1/3 quark pair production $m>\!21$ GeV, CL = 95% .

⁴⁴ ALTHOFF 84I exclude heavy quark pair production for 7 < m < 19 GeV (1/3 charge) using aplanarity distributions (CL = 95%).

NODE=Q008BPE;LINKAGE=J

NODE=Q008BPE;LINKAGE=K

NODE=Q008BPE;LINKAGE=L

REFERENCES FOR Searches for (Fourth Generation) b' Quark

AAD	12AT	PRL 109 032001	G. Aad et al.	(ATLAS Collab.)
AAD	12AU	PRL 109 071801	G. Aad et al.	(ATLAS Collab.)
AAD	12BC	PR D86 012007	G. Aad et al.	(ATLAS Collab.)
AAD	12BE	JHEP 1204 069	G. Aad et al.	(ATLAS Collab.)
CHATRCHYAN		PR D86 112003	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN		JHEP 1205 123	S. Chatrchyan et al.	(CMS Collab.)
AALTONEN	11.J	PRL 106 141803	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	11F	PRL 106 081801	V.M. Abazov et al.	(D0 Collab.)
CHATRCHYAN		PL B701 204	S. Chatrchyan et al.	(CMS Collab.)
AALTONEN	10H	PRL 104 091801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
FLACCO	10	PRL 105 111801	C.J. Flacco et al.	(UCI, HAIF)
ATRE	09	PR D79 054018	A. Atre et al.	(001, 11/111)
ABAZOV	08X	PRL 101 111802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
HUANG	08	PR D77 037302	P.Q. Hung, M. Sher	(UVA, WILL)
AALTONEN	07C	PR D76 072006	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABDALLAH	07	EPJ C50 507	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACOSTA	03	PRL 90 131801	D. Acosta <i>et al.</i>	(CDF Collab.)
AFFOLDER	00	PRL 90 131601 PRL 84 835	A. Affolder et al.	
				(CDF Collab.)
ABE	98N	PR D58 051102	F. Abe et al.	(CDF Collab.)
ABACHI	97D	PRL 78 3818	S. Abachi et al.	(D0 Collab.)
FROGGATT	97	ZPHY C73 333	C.D. Froggatt, D.J. Smith, H.B.	
ABACHI	95F	PR D52 4877	S. Abachi et al.	(D0 Collab.)
ADRIANI	93G	PL B313 326	O. Adriani et al.	(L3 Collab.)
ADRIANI	93M	PRPL 236 1	O. Adriani et al.	(L3 Collab.)
MUKHOPAD		PR D48 2105	B. Mukhopadhyaya, D.P. Roy	(TATA)
ABE	92	PRL 68 447	F. Abe <i>et al.</i>	(CDF Collab.)
Also		PR D45 3921	F. Abe et al.	(CDF Collab.)
ABE	92G	PR D45 3921	F. Abe et al.	(CDF Collab.)
ABREU	91F	NP B367 511	P. Abreu et al.	(DELPHI Collab.)
ABE	90B	PRL 64 147	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	90D	PL B234 382	K. Abe <i>et al.</i>	(VENUS Collab.)
ABREU	90D	PL B242 536	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ADACHI	90	PL B234 197	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
AKESSON	90	ZPHY C46 179	T. Akesson et al.	(UA2 Collab.)
AKRAWY	90B	PL B236 364	M.Z. Akrawy et al.	(OPAL Collab.)
AKRAWY	90J	PL B246 285	M.Z. Akrawy et al.	(OPAL Collab.)
ALBAJAR	90B	ZPHY C48 1	C. Albajar <i>et al.</i>	(UA1 Collab.)
DECAMP	90F	PL B236 511	D. Decamp et al.	(ALEPH Collab.)
ABE	89E	PR D39 3524	K. Abe et al.	(VENUS Collab.)
ABE	89G	PRL 63 1776	K. Abe et al.	(VENUS Collab.)
ABRAMS	89C	PRL 63 2447	G.S. Abrams et al.	(Mark II Collab.)
ADACHI	89C	PL B229 427	I. Adachi et al.	(TOPAZ Collab.)
ENO	89	PRL 63 1910	S. Eno et al.	` (AMY Collab.)
ALBAJAR	88	ZPHY C37 505	C. Albajar et al.	(UA1 Collab.)
ALTARELLI	88	NP B308 724	G. Altarelli et al.	(CERN, ROMA, ETH)
IGARASHI	88	PRL 60 2359	S. Igarashi et al.	(AMY Collab.)
SAGAWA	88	PRL 60 93	H. Sagawa <i>et al.</i>	(AMY Collab.)
ADEVA	86	PR D34 681	B. Adeva et al.	(Mark-J Collab.)
ALTHOFF	84C	PL 138B 441	M. Althoff et al.	(TASSO Collab.)
ALTHOFF	84I	ZPHY C22 307	M. Althoff et al.	(TASSO Collab.)
				,

NODE=Q008

REFID=54229 REFID=54230 REFID=54358 REFID=54458 REFID=54458 REFID=54772 REFID=54460 REFID=16439 REFID=16469 REFID=16643 REFID=53271 REFID=53271 REFID=53412 REFID=54081 REFID=52402 REFID=51505 REFID=51764 REFID=47308 REFID=47308 REFID=46140 REFID=45459 REFID=45376 REFID=45376 REFID=43472 REFID=43644 REFID=43481 REFID=43481 REFID=41874 REFID=42068 REFID=42068 REFID=41840 REFID=41105 REFID=41103 REFID=41317 REFID=41106 REFID=40987 REFID=41336 REFID=41312 REFID=41035 REFID=40844 REFID=40951 REFID=40951 REFID=40966 REFID=40952 REFID=40464 REFID=40899 REFID=40606 REFID=40453 REFID=40171 REFID=12195 REFID=12196